Dynamic Matrix Ansatz for Integrable Reaction-Diffusion Processes
نویسنده
چکیده
We show that the stochastic dynamics of a large class of one-dimensional interacting particle systems may be presented by integrable quantum spin Hamiltonians. Generalizing earlier work [1, 2] we present an alternative description of these processes in terms of a time-dependent operator algebra with quadratic relations. These relations generate the Bethe ansatz equations for the spectrum and turn the calculation of time-dependent expectation values into the problem of either finding representations of this algebra or of solving functional equations for the initial values of the operators. We use both strategies for the study of two specific models: (i) We construct a two-dimensional time-dependent representation of the algebra for the symmetric exclusion process with open boundary conditions. In this way we obtain new results on the dynamics of this system and on the eigenvectors and eigenvalues of the corresponding quantum spin chain, which is the isotropic Heisenberg ferromagnet with non-diagonal, symmetry-breaking boundary fields. (ii) We consider the non-equilibrium spin relaxation of Ising spins with zero-temperature Glauber dynamics and an additional coupling to an infinite-temperature heat bath with Kawasaki dynamics. We solve the functional equations arising from the algebraic description and show non-perturbatively on the level of all finite-order correlation functions that the coupling to the infinite-temperature heat bath does not change the late-time behaviour of the zero-temperature process. The associated quantum chain is a non-hermitian anisotropic Heisenberg chain related to the seven-vertex model.
منابع مشابه
Solvable reaction-diffusion processes without exclusion
For reaction-diffusion processes without exclusion, in which the particles can exist in the same site of a one-dimensional lattice, we study all the integrable models which can be obtained by imposing a boundary condition on the master equation of the asymmetric diffusion process. The annihilation process is also added. The Bethe ansatz solution and the exact N-particle conditional probabilitie...
متن کاملA new class of integrable diffusion–reaction processes
We consider a process in which there are two types of particles, A and B, on an infinite one–dimensional lattice. The particles hop to their adjacent sites, like the totally asymmetric exclusion process (ASEP), and have also the following interactions: A + B → B + B and B + A → B + B, all occur with equal rate. We study this process by imposing four boundary conditions on ASEP master equation. ...
متن کاملReaction-diffusion processes and their connection with integrable quantum spin chains
This is a pedagogical account on reaction-diffusion systems and their relationship with integrable quantum spin chains. Reaction-diffusion systems are paradigmatic examples of non-equilibrium systems. Their long-time behaviour is strongly influenced through fluctuation effects in low dimensions which renders the habitual mean-field cinetic equations inapplicable. Starting from the master equati...
متن کاملExact solutions of exactly integrable quantum chains by a matrix product ansatz
Most of the exact solutions of quantum one-dimensional Hamiltonians are obtained thanks to the success of the Bethe ansatz on its several formulations. According to this ansatz the amplitudes of the eigenfunctions of the Hamiltonian are given by a sum of permutations of appropriate plane waves. In this paper, alternatively, we present a matrix product ansatz that asserts that those amplitudes a...
متن کاملGeneralization of the matrix product ansatz for integrable chains
We present a general formulation of the matrix product ansatz for exactly integrable chains on periodic lattices. This new formulation extends the matrix product ansatz present on our previous articles ( F. C. Alcaraz and M. J. Lazo J. Phys. A: Math. Gen. 37 (2004) L1-L7 and J. Phys. A: Math. Gen. 37 (2004) 4149-4182.) In [1] (to which we refer hereafter as I) and [2], we formulate a matrix pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998